CHARACTERIZATION OF NONLINEAR NEURON RESPONSES

Matt Whiteway whit8022@umd.edu

Dr. Daniel A. Butts

dab@umd.edu

Neuroscience and Cognitive Science (NACS)
Applied Mathematics and Scientific Computation (AMSC)
Biological Sciences Graduate Program (BISI)

AMSC 663 Project Proposal Presentation

Background

- The human brain contains 100 billion neurons
- These neurons process information nonlinearly, thus making them difficult to study

Given the inputs and the outputs, how can we model the neuron's computation? Introduction Approach Evaluation Schedule Conclusion

The Models

- Many models of increasing complexity have been developed
- The models I will be implementing are based on statistics
 - Linear Models Linear Nonlinear Poisson (LNP) Model
 - LNP using Spike Triggered Average (STA)
 - LNP using Maximum Likelihood Estimates Generalized Linear Model (GLM)
 - Spike Triggered Covariance (STC)
 - Nonlinear Models
 - 4. Generalized Quadratic Model (GQM)
 - Nonlinear Input Model (NIM)

The Models - LNP

- Knowns
 - $oxdots ar{s}(t)$ is the stimulus vector
 - Spike times

- Unknowns
 - $oldsymbol{ar{k}}$ is a linear filter, defines the neuron's stimulus selectivity
 - $\ \square$ F is a nonlinear function
 - r(t) is the instantaneous rate parameter of an non-

homogenous Poisson process

The Models - LNP-STA¹

 $\hfill\Box$ The STA is the average stimulus preceding a spike in the output, where N is the number of spikes and $\bar{s}_{spike}(t)$ is the set of stimuli preceding a spike

^{1.} Chichilnisky, E.J. (2001) A simple white noise analysis of neuronal light responses.

The Models - LNP-STA

- \square It can be shown that the STA is proportional to the linear filter \bar{k}
- Though it is possible to fit a parametric form of the nonlinear function, the more common approach is to bin the values of $\bar{k} \cdot \bar{s}(t)$ and plot average spike count for each bin based on the stimulus and spike data (histogram method).
- The Algorithm:
 - $lue{}$ Calculate the STA to find $ar{k}$
 - $lue{}$ Use the stimulus and the filter for the histogram method to estimate F discretely

The Models - LNP

- Knowns
 - $oxdots ar{s}(t)$ is the stimulus vector
 - Spike times

- Unknowns
 - $oldsymbol{ar{k}}$ is a linear filter, defines the neuron's stimulus selectivity
 - $\ \square$ F is a nonlinear function
 - r(t) is the instantaneous rate parameter of an non-

homogenous Poisson process

The Models - LNP-GLM²

- Now we will approximate the linear filter using the Maximum Likelihood Estimate (MLE)
- \square A likelihood function $\mathcal{L}(\theta)$ is the probability of an outcome Y given a probability density function with parameter θ
- The LNP model uses the Poisson distribution

$$P(Y| heta) = \prod_t rac{(r(t)\Delta)^{y_t}}{y_t!} e^{-r(t)\Delta}$$

where Y is the vector of spike counts binned at a resolution Δ

We want to maximize a log-likelihood function

$$\mathcal{L} = \sum_{t = spike} log(r(t)) - \Delta \sum_{t} r(t)$$

^{2.} Paninski, L. (2004) Maximum Likelihood estimation of cascade point-process neural encoding models.

The Models - LNP-GLM

- The Maximum Likelihood Estimate maximizes the probability of spiking as a function of the model parameters when the actual data shows a spike, and minimizes it otherwise.
- \Box Can employ likelihood optimization methods to obtain maximum likelihood estimates for linear filter \bar{k}
- If we make some assumptions about the form of the nonlinearity F, the likelihood function has no non-global local maxima – gradient ascent!
 - F(u) is convex in u
 - \square log(F(u)) is concave in u
- Regularizing estimated linear filter can reduce noise effects
 - Applies penalty for complexity

The Models - LNP-GLM

The Algorithm:

- Assume a form of F and get the corresponding loglikelihood function
- Depending on the resulting function, find the MLE by analytical or numerical means

The Models - STC³

 Spike Triggered Covariance (STC) analysis is a way to identify a feature subspace that affects a neuron's

response.

Find excitatory and suppressive directions

^{3.} Schwartz, O. et al. (2006) Spike-triggered neural characterization.

The Models - STC

$$STC = \frac{1}{N-1} \sum_{n=1}^{N} (\bar{s}_{spike}(t) - STA)(\bar{s}_{spike}(t) - STA)^{T}$$

$$C = \frac{1}{N-1} \sum_{n=1}^{N} \bar{s}_{spike}(t)\bar{s}_{spike}(t)^{T}$$

□ The smallest eigenvalues associated with STC - C correspond to inhibitory eigenvectors in the stimulus space; we will just use the smallest for a "suppressive" filter.

The Models - STC

The model then becomes

$$r(t) = F(\bar{k}_e \cdot \bar{s}(t), \bar{k}_s \cdot \bar{s}(t))$$

- Knowns

 - Spike times

- Unknowns
 - $oxdot ar{k}_e$ is the excitatory filter
 - $oxedsymbol{ar{k}_s}$ is the suppressive filter
 - $lue{\Gamma}$ is a nonlinear function
 - r(t) is the instantaneous rate parameter of an non-homogenous Poisson process

The Models - STC

- \square Again, we could try to fit the nonlinearity parametrically, but using the histogram method is fine if we are just using two filters, with bin values coming from $\bar{k}_e\cdot \bar{s}(t)$ and $\bar{k}_s\cdot \bar{s}(t)$
- □ The Algorithm:
 - $lue{}$ Calculate the STA to find $ar{k}_e$
 - $lue{}$ Calculate the eigenvectors/values of STC-C
 - $lue{}$ Use eigenvector associated with smallest eigenvalue to find $ar{k}_s$
 - $lue{}$ Use the stimulus and the filter for the histogram method to estimate F discretely

The Models - Nonlinear Models

We can extend these models even further by introducing nonlinearities in the input. The general form is:

$$r(t) = F(f_1(\bar{k}_1 \cdot \bar{s}(t)), \dots, f_n(\bar{k}_n \cdot \bar{s}(t)))$$

where the f_i 's can be any nonlinear functions.

- □ Perhaps we should start with something easier first...
- Assuming that the input is a sum of one-dimensional nonlinearities makes parameter fitting much nicer

The Models - GQM⁴

A particular choice of this sum of nonlinearities gives us the Generalized Quadratic Model:

$$r(t) = F\left(\frac{1}{2}\bar{s}(t)^T C\bar{s}(t) + \bar{b}^T \bar{s}(t) + a\right)$$

- Knowns
 - $oxdots ar{s}(t)$ is the stimulus vector
 - Spike times

- Unknowns
 - \square matrix C
 - lacksquare vector $ar{b}$
 - \square scalar a
 - $\ \square$ F is a nonlinear function
 - r(t) is the instantaneous rate parameter of an non-homogenous Poisson process

The Models - GQM

- Even though we are no longer dealing with the GLM, in practice if we choose a form of F that preserves concavity of the log-likelihood, estimating the parameters using MLE will tractable
- Functions commonly used are exp(u) and log(1+exp(u))
- □ The Algorithm:
 - Write down the log-likelihood function
 - Use optimization to find MLE, assuming one of the above forms for F

The Models - NIM⁵

LINEAR NONLINEAR MODEL

$$r(t) = F(\bar{k}_1 \cdot \bar{s}(t), \bar{k}_2 \cdot \bar{s}(t), \ldots)$$

NONLINEAR INPUT MODEL

[5]

$$r(t) = F(\bar{k}_1 \cdot \bar{s}(t), \bar{k}_2 \cdot \bar{s}(t), \ldots) \qquad r(t) = F(f_1(\bar{k}_1 \cdot \bar{s}(t)), f_2(\bar{k}_2 \cdot \bar{s}(t), \ldots))$$

- The Nonlinear Input Model (NIM) defines the neuron's processing as a sum of nonlinear inputs
- Allows for rectification of inputs due to spikegeneration from the input neuron

The Models - NIM

$$r(t) = Figg(\sum_i w_i f_i(ar{k}_i \cdot ar{s}(t))igg)$$

- Knowns

 - Spike times
- Assumptions
 - $F(u) = \alpha \log[1 + e^{\beta(u-\theta)}]$
 - \Box f_i 's are rectified linear functions

- Unknowns
 - $oxdot ar{k}_i$'s are the linear filters
 - \square w_i 's will be $\pm/-1$
 - \Box f_i 's are nonlinear functions
 - $\ \square \ F$ is a nonlinear function
 - r(t) is the instantaneous rate parameter of an non-homogenous Poisson process

The Models - NIM

- □ The Algorithm
 - Write down the log-likelihood function
 - Use optimization to find MLE, assuming one of the above forms for F
 - Regularization will allow us to incorporate prior knowledge about the parameters

Implementation and Data

- Parameter fitting will be implemented on an Intel
 Core 2 Duo with 3 GB of RAM
- Programming language will be MATLAB
- Data
 - Initial work will be done using data from a Lateral geniculate nucleus (LGN) neuron (visual system)
 - simulated data from other neurons in the visual system
 - Data can be found at http://www.clfs.umd.edu/biology/ntlab/NIM/

Introduction Approach **Evaluation** Schedule Conclusion

Validation

- Use stimulus data $\bar{s}(t)$ and response data $\bar{r}(t)$ to construct the model, i.e. find the model parameters
- \square Use stimulus data $\bar{s}(t)$ and the model to create new response data $\bar{r}_{model}(t)$
- lacksquare Now use $ar{s}(t)$ and $ar{r}_{model}(t)$ to generate a new model
- Check to see how closely the parameters of the new model and the original model agree

Testing

- □ Use k-fold cross-validation on the log-likelihood of the model, LL_x, with the log-likelihood of the "null" model, LL₀, subtracted.
- Measure the 'predictive power' of the model by comparing the predicted model output to the measured output:
 - 'fraction of variance explained'

$$FVE = 1 - \frac{MSE(F)}{Var(\bar{r}_{measured}(t))}$$

 Use early models (i.e. LNP) to compare results of later models (i.e. NIM)

Project Schedule and Milestones

- PHASE I September through December
 - Write project proposal (September)
 - Implement and validate the LNP model (October)
 - Develop software to validate models (October)
 - Implement and validate the GLM with regularization (November-December)
 - Complete mid-year progress report (December)
- PHASE II January through May
 - Implement and validate the STC and GQM (January-February)
 - Implement and validate the NIM with linear rectified upstream functions (March)
 - Develop software to test all models (April)
 - Complete final report and presentation
- □ If time permits...
 - Fit the nonlinear upstream functions of the NIM using basis functions
 - Extend models to be used for more diverse stimulus types
 - Use the NIM to model small networks of neurons

Deliverables

- Implemented MATLAB code for all of the models (LNP-STA, LNP-GLM, STC, GQM, NIM)
- Documentation of code
- Results of validation and testing for all of the models
- Mid-year presentation
- □ Final report
- Final presentation

Introduction Approach Evaluation Schedule Conclusion

References

- Chichilnisky, E.J. (2001) A simple white noise analysis of neuronal light responses. Network: Comput. Neural Syst., 12, 199-213.
- Schwartz, O., Chichilnisky, E. J., & Simoncelli, E. P. (2002). Characterizing neural gain control using spike-triggered covariance. Advances in neural information processing systems, 1, 269-276.
- Paninski, L. (2004) Maximum Likelihood estimation of cascade point-process neural encoding models. Network: Comput. Neural Syst., 15, 243-262.
- Schwartz, O. et al. (2006) Spike-triggered neural characterization. Journal of Vision, 6, 484-507.
- Paninski, L., Pillow, J., and Lewi, J. (2006) Statistical models for neural encoding, decoding, and optimal stimulus design.
- Park, I., and Pillow, J. (2011) Bayesian Spike-Triggered Covariance Analysis. Adv. Neural Information Processing Systems, 24, 1692-1700.
- Butts, D. A., Weng, C., Jin, J., Alonso, J. M., & Paninski, L. (2011). Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression. The Journal of Neuroscience, 31(31), 11313-11327.
- McFarland, J.M., Cui, Y., and Butts, D.A. (2013) Inferring nonlinear neuronal computation based on physiologically plausible inputs. PLoS Computational Biology.

Introduction Approach Evaluation Schedule Conclusion

Figures

- http://msjensen.cehd.umn.edu/webanatomy archive/lm ages/Histology/
- 2. http://www.sciencedirect.com/science/article/pii/S007
 9612306650310
- 3. http://en.wikipedia.org/wiki/Spike-triggered average
- 4. http://books.nips.cc/papers/files/nips14/NS14.pdf
- McFarland, J.M., Cui, Y., and Butts, D.A. (2013) Inferring nonlinear neuronal computation based on physiologically plausible inputs. PLoS Computational Biology.