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Background

Introduction Approach Evaluation Schedule Conclusion

� The human brain contains 100 billion neurons

� These neurons process information nonlinearly, thus 
making them difficult to study

INPUTS OUTPUTS

� Given the inputs and the outputs, how can we model 
the neuron’s computation?

[1]

[1] http://msjensen.cehd.umn.edu/webanatomy_archive/Images/Histology/



The Models

Introduction Approach Evaluation Schedule Conclusion

� Many models of increasing complexity have been 
developed

� The models I will be implementing are based on 
statisticsstatistics
� Linear Models – Linear Nonlinear Poisson (LNP) Model 

1. LNP using Spike Triggered Average (STA)

2. LNP using Maximum Likelihood Estimates – Generalized 
Linear Model (GLM)

3. Spike Triggered Covariance (STC)

� Nonlinear Models
4. Generalized Quadratic Model (GQM)

5. Nonlinear Input Model (NIM)



The Models - LNP

Introduction Approach Evaluation Schedule Conclusion

INPUT OUTPUT

[2][2]

� Unknowns

� is a linear filter, defines the 
neuron’s stimulus selectivity

� is a nonlinear function

� is the instantaneous rate 
parameter of an non-
homogenous Poisson process

� Knowns

� is the stimulus vector

� Spike times

[2] http://www.sciencedirect.com/science/article/pii/S0079612306650310



The Models - LNP-STA1

Introduction Approach 1 Evaluation Schedule Conclusion

� The STA is the average stimulus preceding a spike in 
the output, where    is the number of spikes and        
is the set of stimuli preceding a spike

[3]

1.  Chichilnisky, E.J. (2001) A simple white noise analysis of neuronal light responses. 
[3] http://en.wikipedia.org/wiki/Spike-triggered_average



The Models - LNP-STA

Introduction Approach 1 Evaluation Schedule Conclusion

� It can be shown that the STA is proportional to the 
linear filter   

� Though it is possible to fit a parametric form of the 
nonlinear function, the more common approach is to nonlinear function, the more common approach is to 
bin the values of          and plot average spike count 
for each bin based on the stimulus and spike data 
(histogram method).

� The Algorithm:
� Calculate the STA to find 

� Use the stimulus and the filter for the histogram method to 
estimate    discretely



The Models - LNP

Introduction Approach Evaluation Schedule Conclusion

INPUT OUTPUT

[2][2]

� Unknowns

� is a linear filter, defines the 
neuron’s stimulus selectivity

� is a nonlinear function

� is the instantaneous rate 
parameter of an non-
homogenous Poisson process

� Knowns

� is the stimulus vector

� Spike times

[2] http://www.sciencedirect.com/science/article/pii/S0079612306650310



The Models - LNP-GLM2

Introduction Approach 2 Evaluation Schedule Conclusion

� Now we will approximate the linear filter using the 
Maximum Likelihood Estimate (MLE)

� A likelihood function       is the probability of an 
outcome    given a probability density function with 
parameter parameter 

� The LNP model uses the Poisson distribution  

where   is the vector of spike counts binned at a resolution 

� We want to maximize a log-likelihood function 

2. Paninski, L. (2004) Maximum Likelihood estimation of cascade point-process neural encoding models. 



The Models - LNP-GLM

Introduction Approach 2 Evaluation Schedule Conclusion

� The Maximum Likelihood Estimate maximizes the 
probability of spiking as a function of the model 
parameters when the actual data shows a spike, and 
minimizes it otherwise.

� Can employ likelihood optimization methods to obtain � Can employ likelihood optimization methods to obtain 
maximum likelihood estimates for linear filter   

� If we make some assumptions about the form of the 
nonlinearity F, the likelihood function has no non-global 
local maxima – gradient ascent!
� F(u) is convex in u
� log(F(u)) is concave in u

� Regularizing estimated linear filter can reduce noise 
effects
� Applies penalty for complexity



The Models - LNP-GLM

Introduction Approach 2 Evaluation Schedule Conclusion

� The Algorithm:

� Assume a form of F and get the corresponding log-
likelihood function

� Depending on the resulting function, find the MLE by � Depending on the resulting function, find the MLE by 
analytical or numerical means 



The Models - STC3

Introduction Approach 3 Evaluation Schedule Conclusion

� Spike Triggered Covariance (STC) analysis is a way 
to identify a feature subspace that affects a neuron’s 
response.

� Find excitatory � Find excitatory 
and suppressive 
directions

[4]

3. Schwartz, O. et al. (2006) Spike-triggered neural characterization.
[4] http://books.nips.cc/papers/files/nips14/NS14.pdf



The Models - STC

Introduction Approach 3 Evaluation Schedule Conclusion

� The smallest eigenvalues associated with     
correspond to inhibitory eigenvectors in the stimulus 
space; we will just use the smallest for a “suppressive” 
filter.



The Models - STC

Introduction Approach 3 Evaluation Schedule Conclusion

� The model then becomes

� Unknowns� Knowns � Unknowns

� is the excitatory filter

� is the suppressive filter

� is a nonlinear function

� is the instantaneous rate 
parameter of an non-
homogenous Poisson process

� Knowns

� is the stimulus vector

� Spike times



The Models - STC

Introduction Approach 3 Evaluation Schedule Conclusion

� Again, we could try to fit the nonlinearity 
parametrically, but using the histogram method is fine 
if we are just using two filters, with bin values coming 
from            and           

� The Algorithm:
� Calculate the STA to find 

� Calculate the eigenvectors/values of 

� Use eigenvector associated with smallest eigenvalue to 
find 

� Use the stimulus and the filter for the histogram method to 
estimate    discretely



The Models - Nonlinear Models

Introduction Approach Evaluation Schedule Conclusion

� We can extend these models even further by 
introducing nonlinearities in the input. The general 
form is:

where the    ‘s can be any nonlinear functions.

� Perhaps we should start with something easier first…

� Assuming that the input is a sum of one-dimensional 
nonlinearities makes parameter fitting much nicer



The Models - GQM4

Introduction Approach 4 Evaluation Schedule Conclusion

� A particular choice of this sum of nonlinearities gives 
us the Generalized Quadratic Model:

4. Park, I., and Pillow, J. (2011) Bayesian Spike-Triggered Covariance Analysis. 

� Unknowns

� matrix 

� vector 

� scalar  

� is a nonlinear function

� is the instantaneous rate 
parameter of an non-
homogenous Poisson process

� Knowns

� is the stimulus vector

� Spike times



The Models - GQM

Introduction Approach 4 Evaluation Schedule Conclusion

� Even though we are no longer dealing with the GLM, 
in practice if we choose a form of F that preserves 
concavity of the log-likelihood, estimating the 
parameters using MLE will tractableparameters using MLE will tractable

� Functions commonly used are exp(u) and 
log(1+exp(u))

� The Algorithm:

�Write down the log-likelihood function

� Use optimization to find MLE, assuming one of the above 
forms for F



The Models - NIM5

Introduction Approach 5 Evaluation Schedule Conclusion

LINEAR NONLINEAR MODEL NONLINEAR INPUT MODEL [5]

� The Nonlinear Input Model (NIM) defines the neuron’s 
processing as a sum of nonlinear inputs

� Allows for rectification of inputs due to spike-
generation from the input neuron

5., [5] McFarland, J.M., Cui, Y., and Butts, D.A. (2013) Inferring nonlinear neuronal computation based on physiologically plausible inputs. 



� Knowns � Unknowns

The Models - NIM

Introduction Approach 5 Evaluation Schedule Conclusion

� Knowns

� is the stimulus vector

� Spike times

� Assumptions

�

� ‘s are rectified linear functions

� Unknowns

� ‘s are the linear filters

� ‘s will be +/-1

� ‘s are nonlinear functions

� is a nonlinear function

� is the instantaneous rate 
parameter of an non-
homogenous Poisson process



The Models - NIM

Introduction Approach 5 Evaluation Schedule Conclusion

� The Algorithm

�Write down the log-likelihood function

� Use optimization to find MLE, assuming one of the above � Use optimization to find MLE, assuming one of the above 
forms for F

� Regularization will allow us to incorporate prior 
knowledge about the parameters



Implementation and Data

Introduction Approach Evaluation Schedule Conclusion

� Parameter fitting will be implemented on an Intel 
Core 2 Duo with 3 GB of RAM

� Programming language will be MATLAB

Data� Data

� Initial work will be done using data from a Lateral 
geniculate nucleus (LGN) neuron (visual system)

� simulated data from other neurons in the visual system

� Data can be found at 
http://www.clfs.umd.edu/biology/ntlab/NIM/



Validation

Introduction Approach Evaluation Schedule Conclusion

� Use stimulus data      and response data      to 
construct the model, i.e. find the model parameters

� Use stimulus data      and the model to create new 
response data response data 

� Now use      and            to generate a new model

� Check to see how closely the parameters of the new 
model and the original model agree 



Testing

Introduction Approach Evaluation Schedule Conclusion

� Use k-fold cross-validation on the log-likelihood of 
the model, LLx, with the log-likelihood of the “null” 
model, LL0, subtracted.

� Measure the ‘predictive power’ of the model by � Measure the ‘predictive power’ of the model by 
comparing the predicted model output to the 
measured output:
� ‘fraction of variance explained’

� Use early models (i.e. LNP) to compare results of 
later models (i.e. NIM)



Project Schedule and Milestones

Introduction Approach Evaluation Schedule Conclusion

� PHASE I – September through December
� Write project proposal (September)

� Implement and validate the LNP model (October)

� Develop software to validate models (October)

� Implement and validate the GLM with regularization (November-December)

� Complete mid-year progress report (December)Complete mid-year progress report (December)

� PHASE II – January through May
� Implement and validate the STC and GQM (January-February)

� Implement and validate the NIM with linear rectified upstream functions 
(March)

� Develop software to test all models (April)

� Complete final report and presentation

� If time permits…
� Fit the nonlinear upstream functions of the NIM using basis functions

� Extend models to be used for more diverse stimulus types

� Use the NIM to model small networks of neurons



Deliverables

Introduction Approach Evaluation Schedule Conclusion

� Implemented MATLAB code for all of the models 
(LNP-STA, LNP-GLM, STC, GQM, NIM)

� Documentation of code

Results of validation and testing for all of the models� Results of validation and testing for all of the models

� Mid-year presentation

� Final report

� Final presentation
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